Artificial

mieiligence

DIALKI: Knowledge Identification in Conversational Systems through Dialogue-Document Contextualization

Code: https://github.com/ellenmellon/DIALKI

EMNLP 2021

Reported by Yabo Yin

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

Dialogue Context

[User]: Hi, can you tell me something about the private service bureau licenses?

[Agent]: Do you want to apply for a PSB?

[User]: No, I was being curious. Just in case, what should I do if I apply for PSB?

[Agent]: Your application will be reviewed in Albany's DMV. After that, it will be sent to your local DMV office and you'll be scheduled for an inspection.

Grounding document

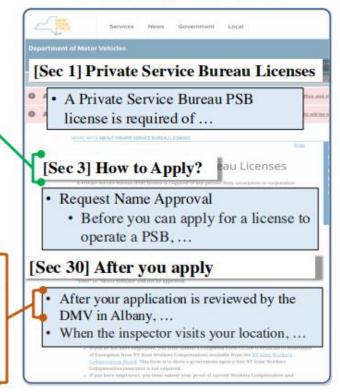


Figure 1: In a document-grounded conversation, *knowledge identification* targets to locate a knowledge string within a long document to assist the agent in addressing the current user query.

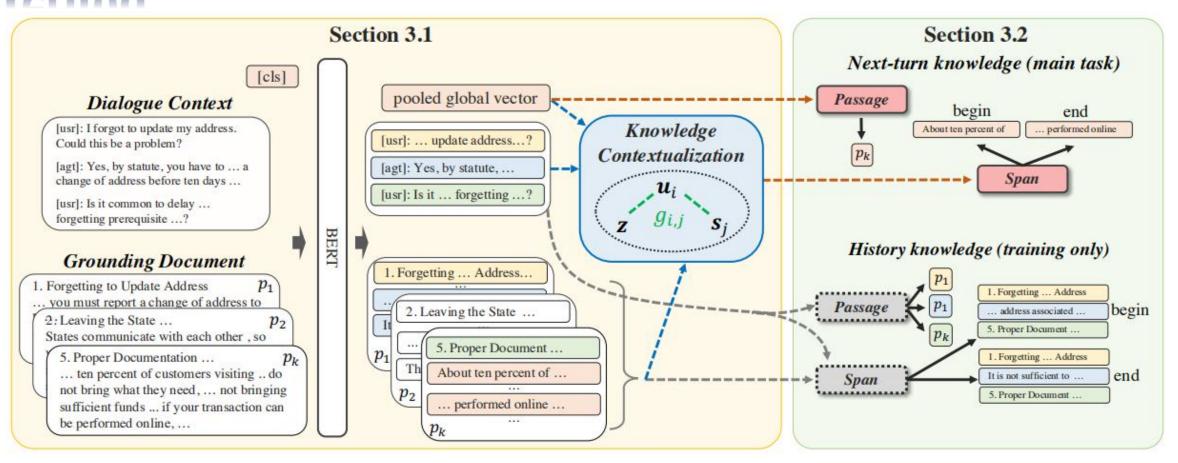


Figure 2: The overview of DIALKI. Each document is divided into passages. We apply BERT and a knowledge contextualization mechanism to obtain dialogue context and knowledge representations (left), for performing both next (main) and history (auxiliary) turn knowledge identification tasks (right). For each turn, DIALKI identifies knowledge by selecting the relevant passage as well as the begin/end spans in the passage.

Problem Definition

dialogue context (u_1, u_2, \ldots, u_n)

grounding document $\mathcal{D} = \{p_1, p_2, \dots, p_{|\mathcal{D}|}\}$

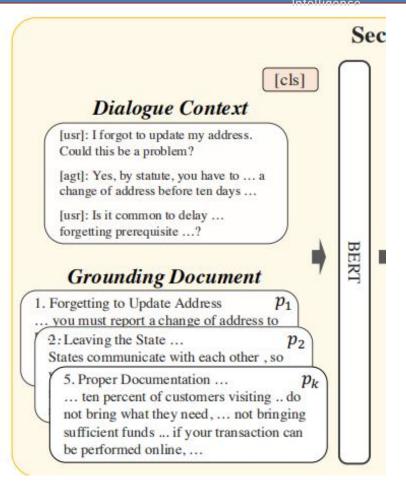
Each passage p consists of a sequence of semantic units $p = (s_1, s_2, \dots, s_l)$

Multi-Passage Encoding

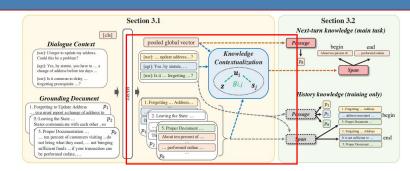
$$\mathbf{X} = [\operatorname{cls}][\operatorname{usr}] u_1[\operatorname{agt}] u_2 \cdots [\operatorname{usr}] u_n$$
$$[\operatorname{sep}] t [\operatorname{cls}] s_1 [\operatorname{cls}] s_2 \cdots [\operatorname{cls}] s_l [\operatorname{sep}]$$

$$\mathbf{H} = G(\mathrm{BERT}(\mathbf{X}))$$
 where $G(.)$ gathers vectors of all '[cls]', '[usr]' and '[agt]' tokens.

H as $[{\bf z}, {\bf u}_1, \dots, {\bf u}_n, {\bf s}_1, \dots, {\bf s}_l]$



- z. pooled global.
- \mathbf{u}_i dialogue utterance u_i
- \mathbf{s}_j span s_j



$$\mathbf{a}_{i,j} = \mathbf{W}_{s} \, \mathbf{s}_{j} + \mathbf{W}_{z} \, \mathbf{z} + \mathbf{W}_{u} \, \mathbf{u}_{i} \,, \, i \in \mathbf{C}_{u}$$

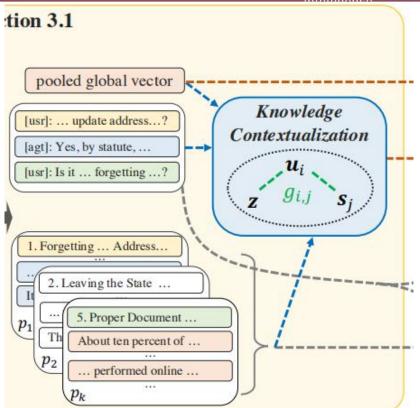
$$g_{i,j} = \sigma \left(\mathbf{u}_{i}^{\top} \, \mathbf{z} + \mathbf{u}_{i}^{\top} \, \mathbf{s}_{j} \right),$$

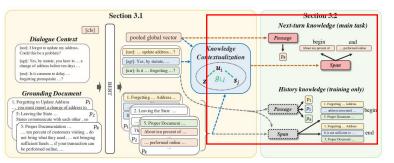
$$\widehat{\mathbf{s}}_{j} = \upsilon \left(\sum_{i \in \mathbf{C}_{u}} \left[\phi(\mathbf{a}_{i,j}) \odot g_{i,j} \right] + \mathbf{s}_{j} \right)$$
where $\mathbf{W}_{s}, \mathbf{W}_{z}, \mathbf{W}_{u} \in \mathbb{R}^{d \times d}$

 C_u indexes the most recent user turns.

 $\widetilde{\mathbf{s}}_j$ with previous agent turns.

$$\mathbf{\dot{s}}_j = [\mathbf{s}_j, \widehat{\mathbf{s}}_j, \widetilde{\mathbf{s}}_j]$$





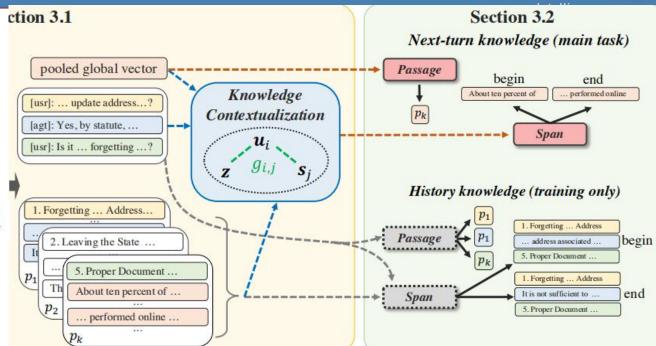
Z matrix containing the pooled global vectors for all utterance representations for u_i in all passages all span representations

$$\mathcal{L}_{psg} = -\log q(\mathbf{W}_p \mathbf{Z})_{\hat{i}}. \tag{1}$$

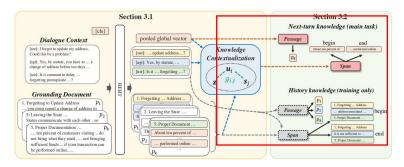
$$\mathcal{L}_{psg} = -\log q(\mathbf{W}_p \mathbf{Z})_{\hat{k}}$$
(1)
$$\mathcal{L}_{begin} = -\log q(\mathbf{W}_b \dot{\mathbf{S}})_{\hat{b}}$$
(2)

$$\mathcal{L}_{\text{end}} = -\log q(\mathbf{W}_e \, \dot{\mathbf{S}})_{\hat{e}} \tag{3}$$

where $\mathbf{W}_p, \mathbf{W}_b, \mathbf{W}_e \in \mathbb{R}^d$.



$$\mathcal{L}_{\text{next}} = \mathcal{L}_{\text{psg}} + \mathcal{L}_{\text{begin}} + \mathcal{L}_{\text{end}}.$$



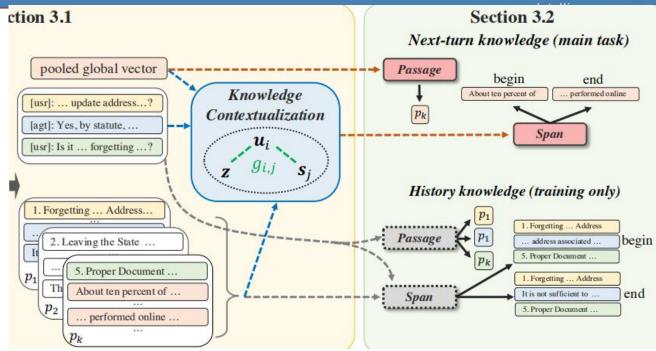
 U_i utterance representations for u_i in all passages

$$\mathcal{L}_{psg}^{h} = \frac{1}{\|\mathbf{U}^*\|} \sum_{u_i \in \mathbf{U}^*} -\log q \left(\mathbf{W}_p^h \ \phi(\mathbf{W}^h \ \mathbf{U}_i)\right)_{k_i}$$

where $\mathbf{W}^h \in \mathbb{R}^{d \times d}$, $\mathbf{W}^h_p \in \mathbb{R}^d$

U* is the set of history turns that can find their knowldge strings in the document \mathcal{D} . k_i is the gold passage index for turn u_i . ϕ is a non-linear

$$\mathcal{L}_{\text{hist}} = \mathcal{L}_{\text{psg}}^h + \mathcal{L}_{\text{begin}}^h + \mathcal{L}_{\text{end}}^h.$$



$$\mathcal{L}_{\text{adv}} = \max_{\|\epsilon\| \le a} \sum_{f \in \{f_{psg}, f_{begin}, f_{end}\}} \text{Div}(f(x)||f(x+\epsilon))$$

$$\mathcal{L} = \mathcal{L}_{\text{next}} + \alpha \mathcal{L}_{\text{hist}} + \beta \mathcal{L}_{\text{adv}}$$
 (4)

Experiments

Made d	Overall			
Method	EM	F1		
BERTQA-Token	34.6	53.2		
BERTQA-Token (our version)	35.8	52.6		
DIALKI (\mathcal{L}_{next} only)	51.2	64.7		
DIALKI	59.5	71.0		
DIALKI (BERT-large)	61.8	73.1		

Гаble 1: Evaluation results on the Doc2Dial test set.

Mathad	Se	en	Unseen		
Method	EM	F1	EM	F1	
Transformer MemNet	22.5	33.2	12.2	19.8	
Transformer MemNet + Pretrain	24.5	36.4	23.7	35.8	
DiffKS (RNN)	25.5	0 - 27	19.7	_	
SLKS (RNN)	23.4	8 8	14.7	<u> </u>	
SLKS (BERT-base)	26.8	-	18.3		
Multi-Sentence (BERT-base)	30.4	37.7	27.6	35.4	
DIALKI (BERT-base)	32.9	40.7	35.5	43.4	

Table 2: Evaluation results of WoW test sets.

Experiments

	Doc2Dial						WoW						
Method	Overall		Se	Seen		Unseen		Overall		Seen		Unseen	
	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1	
BERTQA-Token	42.2	58.1	48.3	61.1	37.0	55.6	_	_	_	-	_	_	
BERTQA-Span	46.3	59.3	54.4	63.5	39.4	55.6	_	_	_	_	_	_	
Multi-Sentence	59.5	68.8	63.6	71.6	56.0	66.4	29.2	37.0	32.4	39.7	26.1	34.3	
DIALKI (\mathcal{L}_{next} only)	60.4	71.2	64.2	72.3	57.1	70.2	31.5	39.7	33.3	41.1	29.8	38.3	
$+\mathcal{L}_{ ext{hist}}$	63.0	72.6	66.5	73.9	59.9	71.9	33.6	41.6	35.1	42.7	32.2	40.5	
$+\mathcal{L}_{\text{hist}}$, know-ctx	63.8	73.4	67.7	74.8	60.5	72.3	33.6	41.5	35.2	42.8	32.1	40.3	
$+\mathcal{L}_{\mathrm{adv}}$	64.4	73.8	66.2	73.9	62.8	73.7	32.9	40.8	34.6	42.2	31.1	39.5	
$+\mathcal{L}_{hist}, \mathcal{L}_{adv}, know-ctx$	65.9	74.8	67.6	74.9	64.4	74.7	34.2	42.1	35.9	43.5	32.6	40.7	

Table 3: Ablation results on Doc2Dial and WoW dev sets.

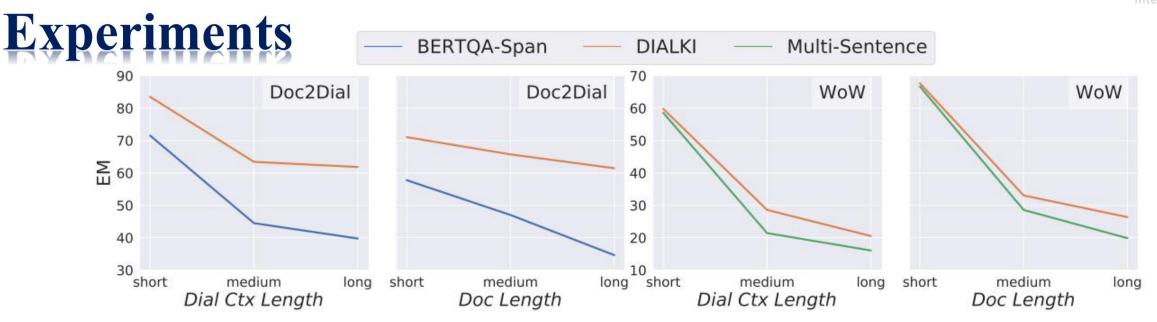


Figure 4: EM versus the length of dialogue context (# previous turns) or document (# tokens).

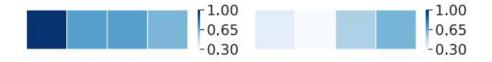


Figure 3: Similarity between z and the latest 4 history turn representations (i.e., $u_1 cdots u_4$ from left to right) on Doc2Dial (left) and WoW (right).

KI Model	Knowledge Input	sacrebleu		
=	full doc	22.84		
BERTQA-Token	pred span	21.42		
DIALKI	pred span	25.16		
DIALKI	pred span & passage	25.84		

Table 4: Response generation results on Doc2Dial dev set. KI stands for Knowledge Identification.

Experiments

Dialogue Context	User: I want to trade in my license for a New York one. Agent: You have to exchange your-out-state driver license within 30 days of User: What if I need my license for when I go back to my other country? Agent: Are you studying in New York State? User: No	User: I heard something about co-op training program. Could you tell me about it, please? Agent: A co-op training program refers to User: Sounds awesome. What should I do to get that? Agent: Well, for that, lets do a little fact check, shall we? Are you using VA educational assistance? User: Yes, I'm using that.
Baseline	Do you need a New York State driver license?	Good. In that case, you may be able to get money
	An extension areas	for books, tuition and housing.
Ours	Are you a driver from another country?	Are you enrolled at an approved institution of Higher Learning?
Gold Response	Are you a licensed driver from another country?	Good. Now, are you enrolled at an approved institution of Higher Learning or IHL?

Table 5: Sample generated responses from BART with the full grounding document (baseline) or the predicted grounding span and passage by DIALKI (ours) as the additional input to the dialogue context.

Mathad	Do	c2Dial	WoW		
Method	Seen	Unseen	Seen	Unseen	
BERTQA-Span	76.9	72.7	<u>=</u>	<u></u>	
Multi-Sentence	85.3	81.6	68.0	57.8	
DIALKI (\mathcal{L}_{next} only)	86.6	84.4	72.9	69.0	
DIALKI	88.5	87.5	73.4	69.7	

Table 6: Passage prediction accuracy on dev sets.

Thank you!